Kids Talk Radio World

"The home of the Occupy Mars Learning Adventures."


Leave a comment

Should I study chemistry?

Chong Liu one-ups plant photosynthesis

New system generates clean energy on the small scale

BY
1:48PM, OCTOBER 4, 2017
Chong Liu

SOLAR STAR Chong Liu, an inorganic chemist at UCLA, has pioneered new approaches to artificial photosynthesis that combine bacteria and inorganic materials.

Chong Liu, 30
Inorganic chemist
UCLA

SN 10 - full list of scientists

For Chong Liu, asking a scientific question is something like placing a bet: You throw all your energy into tackling a big and challenging problem with no guarantee of a reward. As a student, he bet that he could create a contraption that photosynthesizes like a leaf on a tree — but better. For the now 30-year-old chemist, the gamble is paying off.“He opened up a new field,” says Peidong Yang, a chemist at the University of California, Berkeley who was Liu’s Ph.D. adviser. Liu was among the first to combine bacteria with metals or other inorganic materials to replicate the energy-generating chemical reactions of photosynthesis, Yang says. Liu’s approach to artificial photosynthesis may one day be especially useful in places without extensive energy infrastructure.

Liu first became interested in chemistry during high school, and majored in the subject at Fudan University in Shanghai. He recalls feeling frustrated in school when he would ask questions and be told that the answer was beyond the scope of what he needed to know. Research was a chance to seek out answers on his own. And the problem of artificial photosynthesis seemed like something substantial to throw himself into — challenging enough “so [I] wouldn’t be jobless in 10 or 15 years,” he jokes.

Photosynthesis is a simple but powerful process: Sunlight helps transform carbon dioxide and water into chemical energy stored in the chemical bonds of sugar molecules. But in nature, the process isn’t particularly efficient, converting just 1 percent of solar energy into chemical energy. Liu thought he could do better with a hybrid system.

Story continues below graphic

Fake it

artificial leaf diagram
CHONG LIU, HARVARD UNIVERSITY

Artificial “leaves” designed by Chong Liu and colleagues collect solar energy to generate electric current. The current splits water molecules into oxygen and hydrogen, and bacteria in the water transform carbon dioxide and hydrogen into fuels or other useful chemicals.

The efficiency of natural photosynthesis is limited by light-absorbing pigments in plants or bacteria, he says. People have designed materials that absorb light far more efficiently. But when it comes to transforming that light energy into fuel, bacteria shine.

“By taking a hybrid approach, you leverage what each side is better at,” says Dick Co, managing director of the Solar Fuels Institute at Northwestern University in Evanston, Ill.

Liu’s early inspiration was an Apollo-era attempt at a life-support system for manned space missions. The idea was to use inorganic materials with specialized bacteria to turn astronauts’ exhaled carbon dioxide into food. But early attempts never went anywhere.

“The efficiency was terribly low, way worse than you’d expect from plants,” Liu says. And the bacteria kept dying — probably because other parts of the system were producing molecules that were toxic to the bacteria.

As a graduate student, Liu decided to use his understanding of inorganic chemistry to build a system that would work alongside the bacteria, not against them. He first designed a system that uses nanowires coated with bacteria. The nanowires collect sunlight, much like the light-absorbing layer on a solar panel, and the bacteria use the energy from that sunlight to carry out chemical reactions that turn carbon dioxide into a liquid fuel such as isopropanol.

As a postdoctoral fellow in the lab of Harvard University chemist Daniel Nocera, Liu collaborated on a different approach. Nocera had been working on a “bionic leaf” in which solar panels provide the energy to split water into hydrogen and oxygen gases. Then, Ralstonia eutropha bacteria consume the hydrogen gas and pull in carbon dioxide from the air. The microbes are genetically engineered to transform the ingredients into isopropanol or another liquid fuel. But the project faced many of the same problems as other bacteria-based artificial photosynthesis attempts: low efficiency and lots of dead bacteria.

Bottled up

The bionic leaf doesn’t resemble something you’d find on a tree. Here, wires carry electric current into bottles filled with water and microbes. The electricity splits the water molecules, and then microbes transform the resulting hydrogen into fuel.

bionic leaf setup
ALINA CHAN, HARVARD UNIVERSITY

“Chong figured out how to make the system extremely efficient,” Nocera says. “He invented biocompatible catalysts” that jump-start the chemical reactions inside the system without killing off the fuel-generating bacteria. That advance required sifting through countless scientific papers for clues to how different materials might interact with the bacteria, and then testing many different options in the lab. In the end, Liu replaced the original system’s problem catalysts — which made a microbe-killing, highly reactive type of oxygen molecule — with cobalt-phosphorus, which didn’t bother the bacteria.

Chong is “very skilled and open-minded,” Nocera says. “His ability to integrate different fields was a big asset.”

The team published the results in Science in 2016, reporting that the device was about 10 times as efficient as plants at removing carbon dioxide from the air. With 1 kilowatt-hour of energy powering the system, Liu calculated, it could recycle all the carbon dioxide in more than 85,000 liters of air into other molecules that could be turned into fuel. Using different bacteria but the same overall setup, the researchers later turned nitrogen gas into ammonia for fertilizer, which could offer a more sustainable approach to the energy-guzzling method used for fertilizer production today.

Soil bacteria carry out similar reactions, turning atmospheric nitrogen into forms that are usable by plants. Now at UCLA, Liu is launching his own lab to study the way the inorganic components of soil influence bacteria’s ability to run these and other important chemical reactions. He wants to understand the relationship between soil and microbes — not as crazy a leap as it seems, he says. The stuff you might dig out of your garden is, like his approach to artificial photosynthesis, “inorganic materials plus biological stuff,” he says. “It’s a mixture.”

Liu is ready to place a new bet — this time on re-creating the reactions in soil the same way he’s mimicked the reactions in a leaf.

Citations

C. Liu et al. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Letters. Vol. 13, May 6, 2013, p. 2989. doi: 10.1021/nl401615t.

C. Liu et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Letters. Vol. 15, April 7, 2015. doi:10.1021/acs.nanolett.5b01254.

C. Liu et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science. Vol. 352, June 3, 2016. P. 1210. doi:10.1126/science.aaf5039.

C. Liu et al. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proceedings of the National Academy of Sciences. May 2, 2017. doi:10.1073/pnas.1706371114.

Advertisements


Leave a comment

Calling On Students From Around the World to Help Puerto Rico

Kids Talk Radio Science Helping Puerto Rico

We are calling on students from around the world to help other students in Puerto Rico.  We are looking for your creative ideas to make drinking water safe to drink.  We are looking to use solar energy to to create light and to charge cell phones.

What other ideas do you have?

Visit the new Puerto Rico Website today and you will see what we are starting to do to help fellow students on the island.

www.KidsTalkRadioPuertoRico.WordPress.com

main_900-1.jpg

170907-hurricane-irma-puerto-rico-njs-835a_f49999cd27a4f1cfd711bac26c5436cf.nbcnews-ux-2880-1000.jpg

Circuit Visualization.jpg


Leave a comment

Gwynne Shotwell: Road To Mars

Space X is serious about going to Mars.  This is a presentation that you don’t want to miss.

Shotwell Poster.png

DESCRIPTION

As President and COO of SpaceX, Gwynne Shotwell is responsible for the company’s day-to-day operations and for managing all customer and strategic relations. She joined SpaceX in 2002 as Vice President of Business Development and the company’s seventh employee. Since that time she has helped SpaceX secure over 100 missions to its manifest, representing over $12 billion in contracts.

In addition to building the Falcon vehicle family of launches, Shotwell is also driving efforts to fly people on SpaceX’s Dragon spacecraft, send private passengers around the Moon, and land the first private spacecraft on Mars.

On Wednesday, October 11th, Shotwell will share SpaceX’s story on the road to Mars. After the talk, there will be a Q&A session hosted by Steve Jurvetson from DFJ Venture Capital.

Doors open at 6:30pm.

If you’d like to donate to SSI for hosting this event, please visit http://ssi.stanford.edu/give. Thanks!


Leave a comment

Mars Home Planet Initiative

HP & Mars Society Partnering on Mars Home Planet Initiative
Dr. Robert Zubrin to Talk at Inaugural HP Meetup Friday 7pm PDT

Hewlett Packard (HP) and the Mars Society are partnering to bring you the HP Mars Home Planet initiative, a program intended to conceive, plan and ultimately build a virtual colony on the Red Planet that the online public can experience in virtual reality (VR).

HP Mars Home Planet will allow participants to join the virtual mission by designing buildings, transportation, infrastructure, clothing and other related elements needed for a VR human presence on the Martian surface.

HP representatives have described the new effort as “a universe-changing design, architecture, engineering and virtual reality project for the imaginative problem-solvers and technology enthusiasts of tomorrow.”

Dr. Robert Zubrin, President & Founder of the Mars Society, will be one of the primary speakers during the inaugural HP Meetup on Friday, September 29th from 7:00-10:00 pm PDT, and will also serve as one of the judges for HP’s virtual program.

Other participants will include Ryan Holmes, Founder & CEO of SpaceVR, and Sean Young of HP, who will lay out the details of the project, including exactly what the program is looking for and requirements for submission. A panel of scientists and experts will also join the HP Meetup session to discuss plans for Mars exploration.

Those interested in attending the HP Mars Home Planet Meetup in person at HP headquarters (1501 Page Mill Road, Palo Alto, CA) should register at: https://www.meetup.com/Mars-Home-Planet/events/242778501. If you would like to join Friday’s event via live streaming, please visit our web site (www.marssociety.org) or our Facebook page (https://www.facebook.com/TheMarsSociety) prior to the scheduled Meetup.


Leave a comment

International Student Design Contest: Red Rover Lander

giphy.gif

The Mars Society is announcing the international student engineering contest to design a lander capable of delivering a ten metric ton payload safely to the surface of Mars. The competition is open to student teams from around the world. Participants are free to choose any technology to accomplish the proposed mission and need to submit design reports of no more than 50 pages by March 31, 2018.

These contest reports will be evaluated by a panel of judges and will serve as the basis for a down-select to ten finalists who will be invited to present their work in person at the next International Mars Society Convention in September 2018. The first place winning team will receive a trophy and a $10,000 cash prize. Second through fifth place winners will receive trophies and prizes of $5,000, 3,000, $2000, and $1,000 respectively. In honor of the first craft used to deliver astronauts to another world, the contest is being named “Red Eagle.”

Background:

The key missing capability required to send human expeditions to Mars is the ability to land large payloads on the Red Planet. The largest capacity demonstrated landing system is that used by Curiosity, which delivered 1 ton. That is not enough to support human expeditions, whose minimal requirement is a ten ton landing capacity. NASA has identified this as a key obstacle to human missions to Mars, but has no program to develop any such lander. SpaceX had a program, called Red Dragon, which might have created a comparable capability, but it was cancelled when NASA showed no interest in using such a system to soft land crews returning to Earth from the ISS or other near-term missions.

In the absence of such a capability, NASA has been reduced to proposing irrelevant projects, such as building a space station in lunar orbit (not needed for either lunar or Mars expeditions), or claim that it is working on the technology for large visionary interplanetary spaceships which will someday sail from lunar orbit to Mars orbit and back, accomplishing nothing.

For full details about the Red Eagle student engineering contest, including team rules, guidelines and requirements, please click here.


Leave a comment

High School Students From Around The World Are learning About Growing Food For Mars

Students in the USA are getting ready to collaborate with high school students in France and other countries.  They are on a mission to come up with a better way to grow food on Mars.  First, we must do a good job growing food here on Earth.  California high school students are working on special robots that will help us to grow food.

 

We are stilling looking for high school teachers and students to join our team.

Contact us: Suprschool@aol.com

http://www.BarbozaSpaceCenter.com and the http://www.OccupyMars.WordPress.comIMG_0010.JPGIMG_0007.JPGIMG_0006.JPG

IMG_0005.JPG

Space food

Food aboard the Space Shuttle served on a tray. Note the use of magnets, springs, and Velcro to hold the cutlery and food packets to the tray

Red LED lights illuminate potato plants in a NASA study on growing food in space

Space food is a type of food product created and processed for consumption by astronauts in outer space. The food has specific requirements of providing balanced nutrition for individuals working in space, while being easy and safe to store, prepare and consume in the machinery-filled weightless environments of manned spacecraft. In recent years, space food has been used by various nations engaging on space programs as a way to share and show off their cultural identity and facilitate intercultural communication. Although astronauts consume a wide variety of foods and beverages in space, the initial idea from The Man in Space Committee of the Space Science Board was to supply astronauts with a formula diet that would supply all the needed vitamins and nutrients.[1]

Contents

Early history

Astronauts making and eating hamburgers on board the ISS August 2007.

For lunch on Vostok I (1961) Yuri Gagarin ate three 160 g toothpaste-type tubes, two of which contained servings of puréed meat and one which contained chocolate sauce.

In August 1961, Soviet Cosmonaut Gherman Titov became the first human to experience space sickness on Vostok II; he holds the record for being the first person to vomit in space.[2] According to Lane and Feeback, this event “heralded the need for space flight nutrition.”[3]

One of John Glenn‘s many tasks, as the first American to orbit Earth in 1962, was to experiment with eating in weightless conditions. Some experts had been concerned that weightlessness would impair swallowing. Glenn experienced no difficulties and it was determined that microgravity did not affect the natural swallowing process, which is enabled by the peristalsis of the esophagus.

Astronauts in later Mercury missions (1959–1963) disliked the food that was provided. They ate bite-sized cubes, freeze-dried powders, and tubes of semiliquids. The astronauts found it unappetizing, experienced difficulties in rehydrating the freeze-dried foods, and did not like having to squeeze tubes or collect crumbs.[4] Prior to the mission, the astronauts were also fed low residual launch-day breakfasts, to reduce the chances that they would defecate in flight.[5]

Project Gemini and Apollo (1965–1975)

Several of the food issues from the Mercury missions were addressed for the later Gemini missions (1965–1966). Tubes (often heavier than the foods they contained) were abandoned. Gelatin coatings helped to prevent bite-sized cubes from crumbling. Simpler rehydration methods were developed. The menus also expanded to include items such as shrimp cocktail, chicken and vegetables, toast squares, butterscotch pudding, and apple juice.[4]

The crew of Gemini III snuck a corned beef sandwich on their spaceflight. Mission Commander Gus Grissom loved corned beef sandwiches, so Pilot John Young brought one along, having been encouraged by fellow astronaut Walter Schirra. However, Young was supposed to eat only approved food, and Grissom was not supposed to eat anything. Floating pieces of bread posed a potential problem, causing Grissom to put the sandwich away (although he did enjoy it)[6] and the astronauts were mildly rebuked by NASA for the act. A congressional hearing was called, forcing the NASA deputy administrator George Mueller to promise no repeats. NASA took special care about what astronauts brought along on future missions.[7][8][9]

Prior to the Apollo program (1968–1975), early space food development was conducted at the US Air Force School of Aerospace Medicine and the Natick Army Labs.[3] The variety of food options continued to expand for the Apollo missions. The new availability of hot water made rehydrating freeze-dried foods simpler, and produced a more appetizing result. The “spoon-bowl” allowed more normal eating practices. Food could be kept in special plastic zip-closure containers, and its moisture allowed it to stick to a spoon.[4]

Skylab (1973–1974)

Skylab 2 crew eats food during ground training

Larger living areas on the Skylab space station (1973–1974) allowed for an on-board refrigerator and freezer, which allowed perishable and frozen items to be stored and made microgravity the primary obstacle.[10]:142–144 When Skylab’s solar panels were damaged during its launch and the station had to rely on minimal power from the Apollo Telescope Mount until Skylab 2 crewmembers performed repairs, the refrigerator and freezer were among the systems that Mission Control kept operational.

Menus included 72 items; for the first time about 15% was frozen. Shrimp cocktail and butter cookies were consistent favorites; Lobster Newburg, fresh bread,[11] processed meat products, and ice cream were among other choices. A dining room table and chairs, fastened to the floor and fitted with foot and thigh restraints, allowed for a more normal eating experience. The trays used could warm the food, and had magnets to hold eating utensils and scissors used for opening food containers.[10]:142–144[12]:29 The food was similar to that used for Apollo, but canned for preservation;[11] the crew found it to be better than that of Apollo but still unsatisfying, partially due to food tasting different in space than on Earth.[10]:292–293,308 The frozen foods were the most popular, and they enjoyed spicy foods[12]:130 due to head congestion from weightlessness dulling their senses of taste and smell.[10]:292–293,308 Weightlessness also complicated both eating and cleaning up; crews spent up to 90 minutes a day on housekeeping.[13]

After astronaut requests, NASA bought Paul Masson Rare Cream Sherry for one Skylab mission and packaged some for testing on a reduced gravity aircraft. In microgravity smells quickly permeate the environment and the agency found that the sherry triggered the gag reflex. Concern over public reaction to taking alcohol into space led NASA to abandon its plans, so astronauts drank the purchased supply while consuming their pre-mission special diet.[11]

The astronauts of the Apollo-Soyuz Test Project (1975) received samples of Soviet space food when the combined crew dined together. Among the foods provided by Soyuz 19 were canned beef tongue, packaged Riga bread, and tubes of borscht (beet soup) and caviar. The borscht was labeled “vodka“.[14]

Interkosmos (1978–1988)

Bulgarian space food

As part of the Interkosmos space program, allies of the Soviet Union have actively participated in the research and deployment of space technologies. The Institute of Cryobiology and Lyophilization (now the Institute of Cryobiology and Food Technology), founded in 1973 as a part of the Bulgarian Academy of Sciences, has since produced space food for the purposes of the program.[15][16] The menu includes traditional Bulgarian dishes such as tarator, sarma, musaka, lyutenitza, kiselo mlyako, dried vegetables and fruits, etc.[17][18]

Modern

Today, fruits and vegetables that can be safely stored at room temperature are eaten on space flights. Astronauts also have a greater variety of main courses to choose from, and many request personalized menus from lists of available foods including items like fruit salad and spaghetti. Astronauts sometimes request beef jerky for flights, as it is lightweight, calorie dense, and can be consumed in orbit without packaging or other changes.

Rehydratable Shōyu flavoured Japanese ramen from JAXA.
  • Chinese: In October 2003, the People’s Republic of China commenced their first manned space flight. The astronaut, Yang Liwei, brought along with him and ate specially processed yuxiang pork (simp: 鱼香肉丝; trad: 魚香肉絲), Kung Pao chicken (simp: 宫保鸡丁; trad: 宮保雞丁), and Eight Treasures rice (simp: 八宝饭; trad: 八寶飯), along with Chinese herbal tea.[19] Food made for this flight and the subsequent manned flight in 2007 has been commercialized for sale to the mass market.[20][21]
  • Italian: Commercial firms Lavazza and Argotec developed an espresso machine, called ISSpresso, for the International Space Station. It can also brew other hot drinks, such as tea, hot chocolate, and broth. On 3 May 2015, Italian astronaut Samantha Cristoforetti became the first person to drink freshly brewed coffee in space. While the device serves as a quality-of-life improvement aboard the station, it is also an experiment in fluid dynamics in space.[22][23] The brewing machine and drinking cups were specially designed to work with fluids in low gravity.[24]
  • Japanese: The Japan Aerospace Exploration Agency (JAXA) have developed traditional Japanese foods and drinks such as matcha, yokan, ramen, sushi, soups, rice with ume for consumption in orbit.[25] The foods have been produced in collaboration with Japanese food companies such as Ajinomoto, Meiji Dairies, and Nissin Foods.[26]
  • Korean: In April 2008, South Korea’s first astronaut, Yi So-yeon, was a crew member on the International Space Station and brought a modified version of Korea’s national dish, kimchi. It took three research institutes several years and over one million dollars in funding to create a version of the fermented cabbage dish that was suitable for space travel.[27]
  • Russian: On the ISS the Russian crew has a selection of over 300 dishes. An example daily menu can be:[28]
    • Breakfast: curds and nuts, mashed potatoes with nuts, apple-quince chip sticks, sugarless coffee and vitamins.
    • Lunch: jellied pike perch, borsch with meat, goulash with buckwheat, bread, black currant juice, sugarless tea.
    • Supper: rice and meat, broccoli and cheese, nuts, tea with sugar.
    • Second supper: dried beef, cashew nuts, peaches, grape juice.
  • Swedish: Swedish astronaut Christer Fuglesang was not allowed to bring reindeer jerky with him on board a shuttle mission as it was “weird” for the Americans so soon before Christmas. He had to go with moose instead.[29][30]

NASA’s Advanced Food Technology Project (AFT) is currently researching ways to ensure an adequate food supply for long-duration space exploration missions.[31]

Processing

Russian space food

Designing food for consumption in space is an often difficult process. Foods must meet a number of criteria to be considered fit for space. Firstly, the food must be physiologically appropriate. Specifically, it must be nutritious, easily digestible, and palatable. Secondly, the food must be engineered for consumption in a zero gravity environment. As such, the food must be light, well packaged, fast to serve and require minimal cleaning up. (Foods that tend to leave crumbs, for example, are ill-suited for space.) Finally, foods require a minimum of energy expenditure throughout their use; they must store well, open easily and leave little waste behind.

Carbonated drinks have been tried in space, but are not favored due to changes in belching caused by microgravity; without gravity to separate the liquid and gas in the stomach, burping results in a kind of vomiting called “wet burping”.[32] Coca-Cola and Pepsi were first carried on STS-51-F in 1985. Coca-Cola has flown on subsequent missions in a specially designed dispenser that utilizes BioServe Space Technologies hardware used for biochemical experiments. Space Station Mir carried cans of Pepsi in 1996.

Beer has also been developed that counteracts the reduction of taste and smell reception in space and reduces the possibility of wet belches (vomiting caused by belching) in microgravity. Produced by Vostok 4-Pines Stout, a parabolic flight experiment validated that the reduced carbonation recipe met the criteria intended for space.[33] Barley harvested from crops grown for several generations in space has also been brought back to Earth to produce beer. While not a space food (it used the same high carbonation ‘Earth’ recipe), the study did demonstrate that ingredients grown in space are safe for production.[34]

Packaging

Food tray used aboard the Space Shuttle

Packaging for space food serves the primary purposes of preserving and containing the food. The packaging, however, must also be light-weight, easy to dispose and useful in the preparation of the food for consumption. The packaging also includes a bar-coded label, which allows for the tracking of an astronaut’s diet. The labels also specify the food’s preparation instructions in both English and Russian.[32]

Many foods from the Russian space program are packaged in cans and tins.[35] These are heated through electro-resistive (ohmic) methods, opened with a can-opener, and the food inside consumed directly. Russian soups are hydrated and consumed directly from their packages.[36]

NASA space foods are packaged in retort pouches or employ freeze drying.[35] They are also packaged in sealed containers which fit into trays to keep them in place. The trays include straps on the underside, allowing astronauts to attach the tray to an anchor point such as their legs or a wall surface and include clips for retaining a beverage pouch or utensils in the microgravity environment.

Types

Assortment of foods like those served aboard the ISS.

There are several classifications for food that is sent into space:[4][37]

  • Beverages (B) – Freeze dried drink mixes (coffee or tea) or flavored drinks (lemonade or orange drink) are provided in vacuum sealed beverage pouches. Coffee and tea may have powdered cream and/or sugar added depending on personal taste preferences. Empty beverage pouches are provided for drinking water.
  • Fresh Foods (FF)– Fresh fruit, vegetables and tortillas delivered by resupply missions. These foods spoil quickly and need to be eaten within the first two days of flight to prevent spoilage. These foods are provided as psychological support.
  • Irradiated (I) Meat – Beef steak that is sterilized with ionizing radiation to keep the food from spoiling. NASA has dispensation from the U.S. Food and Drug Administration (FDA) to use this type of food sterilization.
  • Intermediate Moisture (IM) – Foods that have some moisture but not enough to cause immediate spoilage.
  • Natural Form (NF) – Commercially available, shelf-stable foods such as nuts, cookies and granola bars that are ready to eat.
  • Rehydratable (R) Foods – Foods that have been dehydrated by various technologies (such as drying with heat, osmotic drying and freeze drying) and allowed to rehydrate in hot water prior to consumption. Reducing the water content reduces the ability of microorganisms to thrive.
  • Thermostabilized (T) – Also known as the retort process. This process heats foods to destroy pathogens, microorganisms and enzymes that may cause spoilage.
  • Extended shelf-life bread products – Scones, waffles and rolls specially formulated to have a shelf life of up to 18 months.

More common staples and condiments do not have a classification and are known simply by the item name:

  • Shelf Stable Tortillas – Tortillas that have been heat treated and specially packaged in an oxygen-free nitrogen atmosphere to prevent the growth of mold.
  • Condiments – Liquid salt solution, oily pepper paste, mayonnaise, ketchup, and mustard.


Leave a comment

We need soil samples from around the World

High School students working at the Barboza Space Center are working on growing better plants for Mars.  www.BarbozaSpaceCenter.com

We need a test-tube size sample of soil from your country for experiments we will be conducting in July, 2018 in Los Angeles and Long Beach, California.  We want to collaborate with other high school students from around the world.   Our project is the Occupy Mars Learning Adventures.  

Contact: Bob Barboza at (562) 221-1780 Cell.

Soil Sample Mars Project.jpg

Martian soil

Curiosity‘s view of Martian soil and boulders after crossing the “Dingo Gap” sand dune (February 9, 2014; raw color).

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil. The term Martian soil typically refers to the finer fraction of regolith. On Earth, the term “soil” usually includes organic content.[1] In contrast, planetary scientists adopt a functional definition of soil to distinguish it from rocks.[2] Rocks generally refer to 10 cm scale and larger materials (e.g., fragments, breccia, and exposed outcrops) with high thermal inertia, with areal fractions consistent with the Viking Infrared Thermal Mapper (IRTM) data, and immobile under current aeolian conditions.[2] Consequently, rocks classify as grains exceeding the size of cobbles on the Wentworth scale.

This approach enables agreement across Martian remote sensing methods that span the electromagnetic spectrum from gamma to radio waves. ‘‘Soil’’ refers to all other, typically unconsolidated, material including those sufficiently fine-grained to be mobilized by wind.[2] Soil consequently encompasses a variety of regolith components identified at landing sites. Typical examples include: bedform armor, clasts, concretions, drift, dust, rocky fragments, and sand. The functional definition reinforces a recently proposed genetic definition of soil on terrestrial bodies (including asteroids and satellites) as an unconsolidated and chemically weathered surficial layer of fine-grained mineral or organic material exceeding centimeter scale thickness, with or without coarse elements and cemented portions.[1]

Martian dust generally connotes even finer materials than Martian soil, the fraction which is less than 30 micrometres in diameter. Disagreement over the significance of soil’s definition arises due to the lack of an integrated concept of soil in the literature. The pragmatic definition “medium for plant growth” has been commonly adopted in the planetary science community but a more complex definition describes soil as “(bio)geochemically/physically altered material at the surface of a planetary body that encompasses surficial extraterrestrial telluric deposits.” This definition emphasizes that soil is a body that retains information about its environmental history and that does not need the presence of life to form.